Wednesday, January 19, 2011

100% Renewable Energy by 2030

A couple of wonks out in California crunched the numbers, and found it is doable. The amazing thing is they leave out biofuels and nuclear. From National Geo:

"We wanted to show that wind, water, and solar power are available to meet demand, indefinitely," says study co-author Mark Delucchi, of the Institute for Transportation Studies at the University of California Davis. He and Mark Jacobson of the civil and environmental engineering department at Stanford University began to tally the build-out that would be needed to supply renewable energy for all the world's factories, homes, and offices, as well as all transport—cars, planes, and ships.

Their argument that such a revolution was both possible and affordable by 2030, first explored as a thought piece published in Scientific American before the 2009 Copenhagen climate talks, is detailed in a study published last month in the journal Energy Policy.

Think of all the jobs this massive undertaking would create.

Delucchi and Jacobson estimate that a drive for 100 percent renewable energy would require a massive building binge. For instance, the world would need nearly 4 million wind turbines, and they'd be big ones—rated at 5 megawatts (MW). That's two or three times the capacity of the majority of turbines on the market; 5 MW turbines were an innovation introduced offshore in Germany in 2006, and China just built its first 5 MW wind turbine last year.

The pair estimate that the world would need 90,000 large-scale solar plants, each with a capacity of about 300 MW—both those that rely on photovoltaic panels that make electricity directly, and concentrated solar power plants that focus the sun's rays to boil water to drive electric generators. At present, fewer than three dozen such utility-scale solar plants are in operation worldwide; most are far smaller.

And the big solar systems wouldn't displace the need for rooftop power; the researchers estimate a need for 1.7 billion 3-kilowatt solar PV systems as well. Think of that as one rooftop PV system for every four people on the planet.

A few technological problems are in the way; meeting supply and demand peaks, creating a modernized grid, energy storage in batteries, etc. - but nothing that cannot be overcome. Even a problem with a rare earth element (here we go again) used in turbines could have a solution.

The main bottleneck, they argue, could be the production of rare earth metals such as neodymium, which is often used in making magnets.

To build all the electric generators to go into the millions of wind turbines they envision, worldwide production of neodymium would have to more than quintuple. But there should be enough neodymium available, the study argues, since current world reserves of the element are about six times larger than needed.

There are also ways around this bottleneck, Delucchi and Jacobson argue. Other types of magnets could be used in turbines, and rare earth metals could be recycled. No such recycling program exists today.

Go read the whole story. Fascinating stuff. While it's unlikely to happen that fast of course, it does show that it is possible - "it really depends on will power".

And lots and lots of money, too.

(hat tip to Sven G)